The Newcomb Problem

Ryan Doody

The Dominance Principle and Expected Value

We defined the expected value of an option $L=\left\{\left\langle p_{1}, \$ x_{1}\right\rangle,\left\langle p_{2}, \$ x_{2}\right\rangle, \ldots\right\}$ to be:

$$
\begin{aligned}
E U(L) & =\sum_{i} p_{i} \cdot u\left(x_{i}\right) \\
& =p_{1} \cdot u\left(x_{1}\right)+p_{2} \cdot u\left(x_{2}\right)+\ldots
\end{aligned}
$$

Consider the following (quite sensible!) principle:
Dominance: For any options ϕ, ψ, if, for every state S, you prefer $(\phi \wedge S)$ to $(\psi \wedge S)$, you should prefer ϕ to ψ.

Although this principle sounds plausible, it has trouble with the following:

The Big Test. You have an important test tomorrow. You'd very much like to pass the test rather than fail it. Tonight, you have two options: you can Study or you can Party. All else equal, you prefer partying to studying. What should you do?

	Pass	Fail
Study	20	0
Party	25	5

Partying dominates studying. So if you're rational, you should party? That doesn't seem right. What's gone wrong?

Evidential Decision Theory

Our actions can affect how likely it is for the world to be one way rather than another. So, you should evaluate your actions on the supposition that you perform them.

Evidential Value: $V(\phi)=\sum_{S} c(S \mid \phi) \cdot V(\phi \wedge S)$
$V(\phi)$ is ϕ^{\prime} ' "news value": it measures the extent to which you'd welcome the news that ϕ is true.

The Newcomb Problem

There are two boxes: a transparent box that contains $\$ 1,000$ and an opaque box that either contains $\$ 1,000,000$ or $\$ 0$. You have to
decide whether to One Box (take just the opaque box) or to Two Box (take both the opaque box and the transparent box). A super reliable predictor, who predicts correctly 99% of the time, has put $\$ 1,000,000$ in the opaque box if and only if she has predicted that you will One Box.

	The Newcomb Problem	
	Predicted: One Box	Predicted: Two Box
One Box	$\$ 1,000,000$	$\$ 0$
Two Box	$\$ 1,001,000$	$\$ 1,000$

Dominance says: Two Box. Evidential Decision Theory says: One Box.

To One Box or To Two Box?

Arguments for Two Boxing:

(1) The Dominance Argument. Taking both boxes dominates taking only on box. If one option dominates the others, you should do it.
(2) The Deference Argument. Imagine that a friend knows what's in the opaque box. She would advise you to take both boxes.
(3) The Reflection Argument. After discovering what was in the opaque box, you will want your past-self to have taken both boxes.

Argument for One Boxing: "If you're so rational, why ain'cha rich?" (WAR). The vast majority of those who One Boxed left with $\$ 1,000,000$ and the vast majority of those who Two Boxed left with only $\$ 1,000$. Wouldn't you rather be in the first group than the latter?

Causal Decision Theory

The Newcomb Problem has led to the development of Causal Decision Theory, which doesn't define expected value in terms of conditional probabilities but rather probabilities of (subjunctive) conditionals.

Causal Value: $U(\phi)=\sum_{S} c(\phi \square \rightarrow S) \cdot u(\phi \wedge S)$
Let's see how Causal Decision Theory is meant to work:

	K_{1}	$\underset{K_{2}}{\text { The }} \text { BIG T }$	K ${ }_{3}$	K_{4}
	$\overbrace{S \square \text { PASS }}$	$\overbrace{S \square \text { FAIL }}$	$\overbrace{S \square \text { PASS }}$	$\overbrace{S \square \text { FAIL }}$
	$P \square$ Pass	$P \square$ Pass	$P \square$ FAIL	$P \square$ FAIL
Study	20	0	20	0
Party	25	25	5	5

Predictor predicts you will One Box:
Opaque Box Transparent Box

Predictor predicts you will Two Box:
Opaque Box Transparent Box \$0 \$1,000

$$
\begin{aligned}
V(\text { One Box }) & =0.99 \cdot M+0.01 \cdot 0 \\
& =990,000 \\
V(\text { Two Box }) & =0.01 \cdot(M+1000)+0.99 \cdot 1000 \\
& =11,000
\end{aligned}
$$

These arguments seem fairly compelling. But notice that (at least, naively) they each appear to recommend Partying over Studying in the Big Test.

WAR Objection: You know that Oneboxers are, on average, richer than Two-boxers. So, isn't it irrational to Two Box?
... or does this beg the question against the Two-boxer (who can complain that they are not in the same situation as the One-boxer)?

Indicative Conditional:
(1) If Shakespeare didn't write Hamlet, someone else did.

Subjunctive Conditional:
(2) If Shakespeare didn't write Hamlet, someone else would have.

Notice that relative to the partition of dependency hypotheses ($\left\{K_{1}, K_{2}, K_{3}, K_{4}\right\}$), Party no longer dominates Study.
In K_{3}, studying does better than partying. And if you think studying will cause you to pass, $c\left(K_{3}\right)$ should be high.

Causal Decision Theory: maximize U-value.

